Институт космических исследований Российской академии наук

4. Информация о научных проектах Федеральной космической программы России, находящихся в стадии разработки

4.1. Проект «Интергелиозонд»

С участием широкой кооперации российских и зарубежных ученых в 2013-2015 гг. в рамках Федеральной космической программы Российской Федерации (ΦΚΠ 2006-2015) осуществлялась разработка проекта предназначенного «Интергелиозонд» (стадия В), для исследований внутренний гелиосферы и Солнца с близких расстояний И ИЗ внеэклиптических положений. Проект «Интергелиозонд» поддержан новой Федеральной космической программой Российской Федерации (ФКП 2016-2025). Основные сведения о проекте «Интергелиозонд» суммированы в Таблице 1.

Два идентичных космических аппарата «Интергелиозонд» будут располагаться на гелиоцентрических, наклоненных в разные стороны к плоскости эклиптики орбитах с разделением на четверть периода, обеспечивая непрерывные внеэклиптические наблюдения приполярных областей Солнца, линии Солнце-Земля и эклиптической короны.

Финансирование	Госкорпорация «РОСКОСМОС»
Головная научная организация	ИКИ РАН
Руководители проекта	Л.М. Зеленый (ИКИ РАН), В.Д. Кузнецов (ИЗМИРАН)
Концепция проекта	 Многоволновые наблюдения Солнца с близких расстояний (до 60Rs)
	 - Внеэклиптические наблюдения Солнца (до 30) и наблюдения с невидимой с Земли стороны
	- Локальные измерения во внутренней гелиосфере в

Таблица 1. Основные сведения о проекте «Интергелиозонд»

и вне плоскости эклиптики			
Основные научные цели	- Солнечное динамо и солнечные циклы		
	- Тонкая структура и динамика солнечной атмосферы		
	- Нагрев солнечной короны и ускорение солнечного		
	ветра		
	- Солнечные вспышки и корональные выбросы массы		
	- Ускорение и распространение солнечных		
	космических лучей		
	- Солнечно-земные связи и космическая погода		
Разработчик космических	НПО им. С.А. Лавочкина		
аппаратов			
Количество космических	2		
аппаратов			
Характеристики космического	Трехосная стабилизированная платформа, защитный		
аппарата	экран, ≈3.7×4.5×3.7 м ³		
Ориентация	Солнечная		
Выведение	Ракетоноситель "Союз-2/16" с разгонным блоком		
	"Фрегат"		
Космодром	Байконур, Республика Казахстан		
Дата запуска	2026-2027		
Орбита	Гелиоцентрическая, эллиптическая, резонансная с		
	Венерой.		
	Перигелий: 60-70 R _c . Афелий: 250-260 R _c .		
	Наклонение орбиты: до 30° к плоскости эклиптики.		
Срок активной эксплуатации	5 лет		
Масса научной аппаратуры	160 кг		
Научные приборы	10 приборов для дистанционных наблюдений за		
	Солнцем		
	9 приборов для локальных измерений		
Научная кооперация	Россия, Польша, Франция, Чехия, Австрия, Германия,		
	Украина, Великобритания		
Центр управления полетом	НПО им. С.А. Лавочкина, ЦНИИМАШ		
Наземный научный комплекс	ИКИ РАН		
Наземные станции	ии «Медвежьи Озера» (64-м антенна)		
	«Уссурийск» (70-м антенна)		
Объем передаваемой	До 1 Мбит/с		
информации			

Основные научные цели проекта «Интергелиозонд»:

1. Магнитные поля в приполярных областях Солнца, динамо-механизм и

солнечная цикличность

2. Тонкая структура и динамика солнечной атмосферы

- 3. Механизмы нагрева солнечной короны и ускорения солнечного ветра
- 4. Природа и глобальная динамика солнечных вспышек и корональных выбросов массы, их влияние на гелиосферу и космическую погоду
- 5. Процессы генерации и распространения энергичных частиц (солнечных космических лучей) на Солнце и в гелиосфере

Перечень приборов и их основные характеристики приведены в Таблицах 1 и

2.

N⁰	Прибор	Измерения	Характеристики	М	Р [Вт]
				[кг]	
1	Многофункциональ ный оптический телескоп « ТАХОМАГ »	Параметры Стокса излучения. Полный вектор магнитного поля и поля скоростей. Интенсивность континуума.	FOV=500"×500"; dα=0.17"-0.35"; λ=6300.5-6303.5 Å, 3000 Å; dλ=32 mÅ; B=±4000 Γc; dB=2 Γc	36	40
2	Многоканальный солнечный фотометр « ФОТОСКОП »	Измерения солнечной постоянной. Собственные глобальные колебания Солнца.	FOV=10°; λ=3000- 16000 Å; dλ=100 Å; dt=16 c	6.5	12
3	Спектрометр рентгеновский изображающий « ТРЕК»	Изображения солнечного диска в диапазонах ЭУФ и мягкого рентгеновского излучения. Локализация активных областей. Тонкая структура солнечной атмосферы. Наблюдения областей горячей плазмы на Солнце.	FOV=0.7°-2°; dα=1.2"-3.5"; λ=131, 171, 304, 8.42 Å	14	15
4	Солнечный рентгеновский телескоп- спектрометр « СОРЕНТО»	Изображения солнечных источников жесткого рентгеновского излучения, измерение спектров.	FOV=1.5°; E=5-100 кэВ; dα=7"; dt=0.1 s	8	6
5	Внезатменный коронограф « ОКА»	Изображения солнечной короны в белом свете. Наблюдения эруптивных явлений, транзиентов, КВМ.	FOV=8°; dα=28"; λ=4000-6500 Å	5	7
6	Гелиосферный	Изображения внешней	FOV=20°; dα=70";	5	7

Таблица 2. Научные приборы проекта «Интергелиозонд» для дистанционных наблюдений

	телескоп	солнечной короны и внутренней	λ=4000-6500 Å		
	«ГЕЛИОСФЕРА»	гелиосферы в белом свете,			
		наблюдения КВМ.			
7	Рентгеновский	Рентгеновские спектры и	FOV=10°; dα=5';	6	21.5
	спектрометр	химический состав плазмы	λ=1.5-9 Å		
	«ХЕМИКС»	солнечной короны.			
8	Поляриметр	Потоки и энергетические спектры	E _x =1.5-25 кэВ;	13.5	19.5
	жесткого	солнечного мягкого	dE=200 эВ (на 5.9		
	рентгеновского	рентгеновского излучения.	кэВ);		
	излучения «ПИНГ-	Потоки, энергетические спектры,	dt≥0.1 c		
	M»	поляризация солнечного			
		жесткого рентгеновского	Е _{х,ү} =20-600 кэВ;		
		излучения.	dE/E=0.12 (на E=60		
			кэВ); dt≥0.1 c; E _{polar}		
			=18-150 кэВ		
9	Сцинтилляционный	Потоки и энергетические спектры	Е=0.01-15 МэВ;	10.5	10
	гамма-спектрометр	жесткого рентгеновского и	dE/E=0.08 (на		
	«ГЕЛИКОН-И»	гамма-излучения Солнца (и	Е=662 кэВ);		
		других космических источников).	dt=0.001-8 c		
10	Гамма-спектрометр	Потоки и энергетические спектры	E _γ =0.03-5.00 MэB;	5	20
	«Сигнал»	солнечного гамма-излучения.	dE/E=(1.7±0.3)%		
			(на 662 кэВ)		
			dt=0.1-60 c		
				109.	158.0
				5	

Таблица 3. Научные приборы проекта «Интергелиозонд» для локальных измерений

Nº	Прибор	Измерения	Характеристики	М [кг]	Р [Вт]
1	Анализатор электронов солнечного ветра « ГЕЛИЕС»	Функция распределения электронов солнечного ветра.	FOV=120°x360°; E=1- 5000 эB; dE/E=0.18	2.5	3.0
2	Анализатор ионов солнечного ветра « ГЕЛИОН »	Энергетические и угловые спектры ионов и электронов солнечного ветра.	<u>Ионы</u> : FOV=120°x100°; E/q=0.04-12 кэВ/q; dE/E=0.07; dt=10- 100 с <u>Электроны</u> : FOV=15°x60°; E=0.35eV-6.30 кэВ; dE/E=0.16	1.8	1.5
3	Энерго-масс- анализатор плазмы солнечного ветра « ПИПЛС-Б»	Ионы солнечного ветра: анализ энергетического и массового состава солнечного ветра, определение функции распределения по скоростям.	FOV=45°x45°; E=1-20 κ∍B; m/q=2-9; m/dm=10- 40; dα=2°-9°; dE/E=0.05;	2.5	4.0

			dt>1 мин		
4	Пылевой масс-	Межпланетные и межзвездные	m=10 ⁻¹⁶ -10 ⁻⁶ г;	2.5	9.8
	анализатор	пылевые частицы.	m/dm=100; v=5-100		
	«ПИПЛС-А»		км/с		
5	Магнитометр	Гелиосферное магнитное поле	B=±1000 nT	1.9	5.0
	«ГЕЛИОМАГ»	и его возмущения.	dB=2 pT		
6	Магнитоволновой	Магнитные и электрические	f =300 Гц - 30 МГц;	9.5	18.0
	комплекс « ИМВЭ »	поля, волны в межпланетной	Е/q=0.05-5 кэВ/q;		
		плазме.	dE/E=5-7%; dt=0.031		
			С		
7	Радиоспектрометр	Радиоизлучение плазмы	f=15 кГц – 300 МГц	2.2	10.0
	«РСД»	солнечной короны и	DR=80 дБ		
		солнечного ветра.			
8	Телескоп	Энергичные частицы в	<u>Электроны</u> :Е=6-40	4.5	14.0
	заряженных частиц	гелиосфере.	кэВ, 0.15-10 МэВ		
	«СКИ-5»		<u>Протоны</u> : E=2-120		
			МэВ <u>Ионы</u> :Е=10-200		
			МэВ/нуклон		
9	Детектор	Солнечные нейтроны, жесткое	En=3-100 MэB;	6.5	15.0
	нейтронов	рентгеновское и гамма-	Еγ=0.03-10 МэВ		
	«ИНТЕРСОНГ»	излучение.			
				33.4	80.3
					1

Планируемые результаты исследований и экспериментов с использованием научной аппаратуры проекта «Интергелиозонд»:

- Магнитные поля в приполярных областях Солнца, динамо-механизм и солнечная цикличность
 - Структура магнитного поля в полярных областях Солнца
 - Меридиональные потоки плазмы и перенос магнитного поля в полярных областях Солнца
 - Солнечная постоянная и ее вариации на различных гелиодолготах
- II. Тонкая структура и динамика солнечной атмосферы

- Тонкие магнитоплазменные структуры на фотосфере и в атмосфере Солнца на различных гелиоширотах
- Динамики этих структур и их роли в формировании солнечной атмосферы и мелкомасштабных энерговыделениях
- III. Механизмы нагрева солнечной короны и ускорения солнечного ветра
 - Процессы выделения энергии в солнечной атмосфере на различных пространственных и временных масштабах и их роль в нагреве солнечной короны и ускорении солнечного ветра
 - Волновые и турбулентные процессы в солнечном ветре, их роль в ускорении солнечного ветра
 - Свойства солнечного ветра на различных гелиоширотах и расстояниях от Солнца
 - Трехмерная структура магнитного поля во внутренней гелиосфере
- IV. Природа и глобальная динамика солнечных вспышек и корональных выбросов массы, их влияние на гелиосферу и космическую погоду
 - Триггерные механизмы солнечных вспышек и корональных выбросов массы
 - Связь между вспышками и корональными выбросами массы
 - Эффекты солнечных вспышек и корональных выбросов массы (магнитных облаков, ударных волн) на внутреннюю гелиосферу
 - Трехмерная динамика корональных выбросов массы

- Процессы генерации и распространения энергичных частиц (солнечных космических лучей) на Солнце и в гелиосфере
 - Процессы ускорения заряженных частиц, процессы генерации нейтронов, жесткого рентгеновского и гамма-излучения во время солнечных вспышек
 - Процессы ускорения заряженных частиц при формировании и распространении корональных выбросов массы
 - Связь между процессами солнечной активности и энергичными частицами во внутренней гелиосфере
 - Процессы распространения энергичных частиц в солнечной короне и внутренней гелиосфере

V.D., Kuznetsov, L.M. Zelenyi, I.V. Zimovets et al. The Sun and Heliosphere Explorer – The Interhelioprobe Mission // Geomagnetism & Aeronomy, Vol. 56, № 7, 2016 (accepted)

3.2. «Нулевое» магнитное поле и его роль в межпланетных и околопланетных космических экспедициях

Бреус Т.К., ИКИ РАН, <u>breus@mail.ru</u>

Гурфинкель Ю.И., ИКИ РАН, <u>yurigurf@gmail.com</u>

Исследовалось воздействие слабого («нулевого») магнитного поля на сердечнососудистую систему здоровых волонтеров исследовалось в лабораторных условиях с помощью специально разработаанной и построенной установки АРФА (рис 1). Исследования показали, что в нулевом поле существенно уменьшается частота сердечных сокращений и диастолическое артериальное давление. Скорость капиллярного кровотока и средняя продолжительность кардиоинтервалов возрастала по сравнению с мнимой экспозицией. Полученные результаты могут быть использованы при планировании длительных межпланетных экспедиций и посадке на такие планеты, как Марс и Луна.

Рис.1. Установка АРФА для моделирования «нулевого» магнитного поля

3.3. Вариации уровня гормонов у жителей Шпицбергена во время магнитных бурь

Бреус Т.К., ИКИ РАН, <u>breus@mail.ru</u>

Зенченко Т.А., ИКИ РАН, zench@mail.ru

Впервые было показано, что в условиях самых северных на Земле круглогодично обитаемые населенных пунктов (Шпицберген) возрастание уровня геомагнитной активности приводит к значимому (вплоть до 30%) изменению уровня секреции ряда гормонов (кортизола, Т3 и Т4) у постоянно проживающих там здоровых людей (980 образцов крови). Результат означает наличие реакции адаптационного стресса при воздействии геомагнитной активности.

T.K. Breus, E.R. Boiko, T.A. Zenchenko. Magnetic storms and variations in hormone levels among residents of North Polar area – Svalbard, Life Sciences in Space Research, Volume 4, January 2015, Pages 17–21

3.4. Быстрые вариации потока энергичных ионов вблизи околоземной ударной волны

Петрукович А.А. ИКИ РАН, apetruko@iki.rssi.ru

По наблюдениям проектов Спектр-Р/Плазма-Ф (прибор МЭП) и THEMIS (SST) обнаружены быстрые вариации потоков энергичных ионов вблизи околоземной ударной волны, как в солнечном ветре, так и в магнитослое с

периодами 10 – 30 секунд в широком диапазоне энергий от 4 кэВ до нескольких сотен кэВ. Построен каталог более сотни событий. Синхронность колебаний на разных энергиях не позволяет соотнести данный феномен с ранее описанными явлениями резонансного взаимодействия отраженных ионов с фронтом ударной волны. Колебания обычно наблюдались в форшоке наклонной ударной волны при повышенной скорости солнечного ветра.

Petrukovich, AA; Inamori, T; Balaz, J; Kudela, K; Slivka, M; Strharsky, I; Gladyshev, VA; Sarris, T; Sarris, E; ,Oscillations of energetic ions flux near the Earth's bow shock,Journal of Geophysical Research: Space Physics, 120, 4700-4710, 2015